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Note 

n the Calculation of Combined Corrections 
in the LMTO Method 

1. INTRODUCTION 

The LMTO method proposed by 0. K. Andersen [l] is the most efficient tool 
for computing the electron properties of solids in the formalism of density func- 
tional. In the simplest version of the method a real unit cell is substituted wit 
atomic sphere of the same volume (atomic sphere approximation, ASA) with 
spheric potential and electron density. The ASA can be improved if we take into 
account the real form of a cell, i.e., compute the combined corrections (CC) to the 
ASA. The improvement is important for calculations of optical properties [a], for 
disordered systems, etc. 

The usual way to compute these corrections is to do some summation in the 
reciprocal space [l] and to store the correspondent coefficients in computes 
memory. But it have been found that the CC can be computed in the direct 
space via the standard structure constants of the LMTO method [3]. Follow 
Andersen [4] we have derived the expressions for the CC which are always suit 
for the systems with broken translational symmetry. Our notations are almost 
equivalent to [l, 41. 

2. REAL SPACE REPRESENTATION FOR THE CQMBENED CORRECTIONS 

Let us discuss the muffin-tin tesselation of some solid (Fig. 1). We can surround 
each atom with an arbitrary cell envelope by Wigner-Seitz procedure. In general, 
it would be the Voronoi polyhedra (for disordered systems). The MT-orbita~s 
XRL(rR) are attributed to every atom with the origin at R, where rR = P - and 
L= Zm is an orbital quantum number and its projection. En ASA we neglect the 
contribution from the interstitial region. Then the combined correction ts the 
Hamiltonian H,,,,,, and overlap matricies OR,,,,, calculated in ASA takes the 
form 

Here { ... ) and ( .‘. ) mean the integral over the whole space an 
spheres, respectively, vR ,n is the average value of the potential in the interstitial 
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FIG. 1. The Voronoi tesselation of the crystal potential. The dashed area is an interstitial space with 
constant potential. S is a surface of spheridized MT-potential, and 2 is a boundary of Voronoi 
polyhedra. 

region. 0. K. Andersen has proposed to use the zero value of electron kinetic energy 
in the interstitial region, ICY = 0, afterwards in this region MT0 equals xRL(rR) = 
XRI(~L)(SRI~R) ( ‘+I i’Y, rR), where xRI(DL) is the value of MT0 on the atomic 
sphere of radius sn and Y,(r,) is the usual spherical harmonic, rR = 1 r-R 1 [ 11. 
We introduce the set of orbitals Nn,-(rR) from expression xnL(rR)= 
x~[(D~)(s~/w)~‘* NRL(rR), where w is the mean radius of the atomic sphere. Then 
we get 

CXR’L’ I XRLI = XR’I’(~L’)h’IWP2 CNRSL, I J%LIhI~)1’2 XRIPL). 

We have used the standard expansion for N,,(r,), 

(1) 

where JRL(rR) = [2(21+ l)] PI (r&)’ i’Y,(r,). The set of coefficients S,,,,,, are 
the standard structure constants of the LMTO method [ 11: 

S R,L<RL= --2(4~)~‘* (s~,/w)~+~‘~ (s&)‘+“~ ,,,‘;:,,,;;~ l),! 
. . 

where CLLILc, = 1 dn Y,(n) Y;,(n) Y,.(n) are the Gaunt coefficients. The orbitals 
NRL(rR) and JRL(rR) we can treat as a special case of more general set NR,(rR) and 
2&(rR) which are the eigenfunctions of Helmholz operator (V’+ x’). In explicit 
form 

JtrRL(rR) = -(w/s~)~‘* (ICS~)‘+’ fzI(kxR) YL(rR)/(21- l)!!, (34 

2iRL(rR) = (d4”2 W- lY!jdfcrd YL(rR)/2 (qd’, (3b) 
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where the yli and j, are the spherical Bessel functions. For MT0 .&Jr,), we have 
the expansion formula 

Now we can use the Green identity for new set and afterwards go to the lim’ 
K2 + 0. We implement the Green identity to the interstitial region (which is dasbe 
on the figure) for the MTOs J+$,~,(Jc:, rR) and Jua, (x2, rR), 

There s and C means the integration over an AS surface and the cell boun 
subsequently. Integrals over C compensate for each other and for integrals over an 
AS surface we use Eq. (4). Using the property V2&, = --K~J&, we get the 
equality 

where the Wronskian W is determined as W(f, g} = s2f(s) g(s)[D(s) -D(j)], 
D(s) = s(dfldr)/f(s), r = s. Afterwards we take the limit rc: -+ 0 in Eq. (5), differen- 
tiate it over ICY + 0, and use Eq. (4). Hence we get the main result 

CNrt,.v I NRL! = - W(fi, NjR 6,.,s,, + SRrLtRL W(i?j, J}R -k W(.k NjRt Sw~L~wr 

+ W{J, N}R s,,,,,,- 1 SR,L,R,+$.k S],. SR,aL,,RL. 
R”L” 

Here a subscript near the Wronskian indicates the site where it is calculated. Usin 
Eq. (3) we get the important relation 

w~CNR,L,INRLI =A bRIw)2 hR,L,RL f 
i 

- c ~R,‘R”L”(sR’r/w)2 4t21” + I;~ c21,, + 3J SR”L”RL. 
R"L" 

This equation together with Eq. (1) gives the value of LMTO combined corrections 
via S,.,,,, and S,,,.,, = (dS,~L~,L/drc2)K~+o. 
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In the case of a crystal lattice the combined corrections of a type [lv:,,, 1 NfJ are 
needed, where A$ = .Z’, NRL(rR) exp(ikR) are the Bloch sums and q is the position 
of atom in a basis. After Bloch summing in Eq. (6) we immediately get the final 
expression for CC, 

w3[NtfrL# 1 Ni,, =A @l/w)’ 8q’L’qL + [ 4(2;+ 1) ww)* + 4(21f+ 1) ww.)*] 

sfE’L’qL 
1 

x - - 2 w -*s;,,, 

where Sf,L,qL are the structure constants defined by Eq. (l), St,,,,, = 
CT SR’L’RL exp(ikT), T is a vector of translation. 

Introducing vectors A = R - R’ = T - 6, S = q’ - q we can write 

%‘LRL(~*) = (21- 1)!;;2(1- l)!! (&dI’+1’2 (%/~)‘+1’2 

xc CLL,L,+w)‘+I’+l n,(d) i-‘Y;.(A), (8) 
L” 

where L” = Pm”, 1” = II- I’ 1, 1 l- I’ I + 2, . . . . I+ I’, and mu = m’ -m. After differen- 
tiation of Eq. (8) and taking limit ICY --, 0 the only remaining terms in the sum will 
be l”=l+l’and I”=l+I’-2, 

w-*&,~,~~ = (s~,/w)I’+~‘~ (@v)‘+~‘* gL,LfLL&l)[(4n)1’2 i’Y,.(A)]*, (94 

where 

f LL’L”= -(42w) a,o~ro6,.,+2(21,~~ 1) w4~-‘~,.,,+,(1-~,,) 

x (w/d)‘“-’ 6 1”,1+1’-2e(111- IZ-r,I), Pb) 

where 19(x) = 1 when x > 0 and e(x) = 0 when x < 0. It should be noted that S has 
the term I= I’ = I” = 0 which increases with the distance as I R -R’ l/w. It can be 
circumvented in the case of a crystal if we use the Ewals summation technique [6]. 
Namely, let us write the relation between the LMTO structure constants St,L.qL [l] 
and KKR ones A$L,qL [6, 71, 

SffLcqL = Lim 2 .~.oK(21-l)!!~21.-1)!! (1CSq,)~+1’2(KSq)‘+1’2Aqk,L,qL(IC2), (loa) 

where 

A&qL = 471 c i- l”CLLsL. Dk,,,,, (IC’). (lob) 
L” 
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The KKR constants Dk,,,,,, are simply evaluated with the Ewald technique 161~ 
After differentiation in (10) and taking the limit IC’ -+ 0 we get the result, 

w-~$~,,,,, = (.Y~,/w)I’+~‘~ (s&v)‘+ ‘I2 exp[ik(q’-q)] 

where Et,- qi+l’-2m’--m and C~‘-ql+l’m’--m are the standard LMTO dimensionless 
structure constants (see Eq. (4.48) in [ 11) and the modified one, respectively. 

The Ewald form [6] that we have used for standard structure constants C&, is 

- 2r/ws;io6,,,/7r”2, (lib) 

and, for modified structure constants rk, we get the similar expression (A 3 1 I - I’ / ): 

ill + Ik+g12h21 ~~+Jfp(k+g) 

+ 6,,6,,,/(27c”2qw). (ale) 

Here 0, is the volume of unit cell, CJ~ + g = exp[ -(k -t g)2/4q2], y is an Ewal 
factor, in all sums the term A = 0 is excluded. For the sake of clarity we ca 
remaind the relation between standard structure contants Sk and Ck Cl]: 

w-~,$,,,,, = (s,,,/w)I’+ ‘I2 (sJw)‘+ ‘I2 exp[ik(q’ - 

~gL’L,i.‘=l+l’C~‘--qlf~m.~-m. 

Formulae (1 ), (7), and (11) allows us to compute the combined corrections con- 
currently with ASA terms and economize computer storage and speed up calcula- 
tions. This procedure, where applied in our Fortran code and the computation of 
CC in the present scheme, has become approximately half as much time and disk 
storage consuming in comparison with the standard scheme [ 11. 
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Almost analogously we can write the combined corrections with the localized 
MT0 s N$ [S, 51. So, for the case of a crystal we have 

1 
--W 

2 

where Sak are the screened structure constants, CI = CQ are the screening constants, 
and oi, may be used as free parameters. The term increasing with the distance in 
Eq. (9) now does not allow one to get the expression for the dotted S-matrix con- 
veniently for computation, so in [4] the authors have used numerical differentia- 
tion. 

To complete the discussion it is necessary to present the explicit expressions for 
the coefficients g,,, : 

g LtL = -2(471.)1’2 
(21” - l)!! 

(2Z- l)!! (21’- l)!! cLL,L,s. 

In the case of Z”=Z+Z’, m”=m’-m they are given in [l]: 

g,,,,r = I+I’ = tlml’m’l”m”, 

tlml’m’l”m” = ( - 1)” + l 2[(2Z+ 1)(21’+ l)(Y+m”)! (In-m”)!]1/2 

x [(21”+ l)(Z+m)! (Z-m)! (I’+m’)! (I’-m’)!]-1/2. 

For the case I” = Z + 1’ - 2, rn” = m’ - m we obtain 

g,,,, I” = ,+ I’- 2 = - U,ml’m’l”m” t,ml’m’[“m” 

x[2(2Z-1)(21’-1)(21”+3)]-‘, 

where 

u l,r,~~,~~=(Z-m-l)(Z-m)(Z’- m’- 1)(1’-m’) 8(1-2-m) 0(1’-2-m’) 

-2(Z+m)(Z-m)(l’+m’)(l’-m’) O(Z-l-/m~)8(1’-l-~m’~) 

+(Z+m-1)(1+m)(l’+m’-1)(1’+m’)8(1-2+m)8(1’-2+m’). 
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3. CONCLUSION 

In the present paper we have derived the explicit formulae for the so-calle 
bined corrections to the atomic sphere approximation (ASA) in the LMTO method 
via structure constants and their energy derivatives suitable for crystals and disor- 
dered solids. The Ewald procedure is used to calculate CC for the crystal with an 
arbitrary basis. The procedure sufficiently economizes the computer time an 
storage needed. This procedure. may be evidently generalized for ~orn~uti~g some 
class of matrix elements with the standard MT0 s or the localized ones. 
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